The role of ZmpC in the clinical manifestation of invasive pneumococcal disease

Amelieke J.H. Cremers
A mirror between North and South
14-11-2014
Streptococcus pneumoniae
Streptococcus pneumoniae

ACQUISITION

TRANSMISSION

TISSUE INVASION

DISEASE

RECOVERY?

Nasopharyngeal carriage

Meningitis

Bacteremia

Pneumonia

Radboudumc
Streptococcus pneumoniae

Disease

Nasopharyngeal carriage

Meningitis
Pneumonia with bacteremia
Pneumonia
Streptococcus pneumoniae

Invasive pneumococcal disease (IPD)
Streptococcus pneumoniae

Invasive pneumococcal disease (IPD)

Annually 1.6 million deaths worldwide
Streptococcus pneumoniae

Serotype – prevention
Streptococcus pneumoniae

Serotype – replacement
Streptococcus pneumoniae

Serotype – clinical image
Streptococcus pneumoniae
Streptococcus pneumoniae

Does clinical diversity among pneumococcal infections originate from the pneumococcal genome?
ZmpC
- Present in part of the pneumococcal population
- Large secreted pneumococcal protein
- Sequence highly conserved
- Activates degradation of extracellular matrix, MMP-9
- Inhibits innate host defense, syndecan-1 ectodomain shedding
- Inhibits neutrophil influx, PSGL-1
- More severe disease in animal studies

Its role in different aspects of IPD?
Methods – cohort study

Blood culture + \textit{S.pneumoniae}

Two Dutch hospitals ’01–’13
Serotype (n=549)

- Yellow bars: zmpC -
- Red bars: zmpC +
- Light blue bars: ~4000bp PCR product

The graph shows the distribution of isolates across different serotypes.
Patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>zmpC+</th>
<th>zmpC−</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects</td>
<td>542</td>
<td>112</td>
<td>430</td>
<td>0.649</td>
</tr>
<tr>
<td>Age</td>
<td>68 (55–78)</td>
<td>70 (57–78)</td>
<td>68 (54–78)</td>
<td>0.649</td>
</tr>
<tr>
<td>Males</td>
<td>47.6 (258/542)</td>
<td>39.3 (44/112)</td>
<td>49.8 (214/430)</td>
<td>0.048</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>21.8 (114/522)</td>
<td>18.5 (20/108)</td>
<td>22.7 (94/414)</td>
<td>0.348</td>
</tr>
<tr>
<td>Liver disease</td>
<td>6.9 (36/521)</td>
<td>4.7 (5/107)</td>
<td>7.5 (31/141)</td>
<td>0.395</td>
</tr>
<tr>
<td>Renal disease</td>
<td>6.2 (32/519)</td>
<td>6.5 (7/107)</td>
<td>6.1 (25/142)</td>
<td>0.823</td>
</tr>
<tr>
<td>COPD</td>
<td>21.0 (114/542)</td>
<td>26.8 (30/112)</td>
<td>19.5 (84/430)</td>
<td>0.094</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>17.5 (95/542)</td>
<td>12.5 (14/112)</td>
<td>18.8 (81/430)</td>
<td>0.116</td>
</tr>
<tr>
<td>Charlson Comorbidity Score</td>
<td>4.4 ± 2.7</td>
<td>4.3 ± 2.4</td>
<td>4.4 ± 2.7</td>
<td>0.079</td>
</tr>
<tr>
<td>Immunocompromising therapy</td>
<td>7.4 (40/538)</td>
<td>8.2 (9/110)</td>
<td>7.2 (31/428)</td>
<td>0.688</td>
</tr>
<tr>
<td>Smoking</td>
<td>62.4 (204/327)</td>
<td>73.2 (52/71)</td>
<td>59.4 (152/256)</td>
<td>0.033</td>
</tr>
<tr>
<td>Treated at hospital A</td>
<td>83.4 (441/529)</td>
<td>88.8 (95/107)</td>
<td>82.0 (346/422)</td>
<td>0.092</td>
</tr>
</tbody>
</table>
Clinical syndrome

<table>
<thead>
<tr>
<th>Clinical Syndrome</th>
<th>All</th>
<th>zmpC+</th>
<th>zmpC−</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia</td>
<td>79.0 (387/490)</td>
<td>85.0 (85/100)</td>
<td>77.4 (302/390)</td>
<td>0.098</td>
</tr>
<tr>
<td>Pleural empyema</td>
<td>7.5 (29/387)</td>
<td>5.9 (5/85)</td>
<td>7.7 (24/302)</td>
<td>0.645</td>
</tr>
<tr>
<td>Meningitis</td>
<td>9.2 (45/490)</td>
<td>8.0 (8/100)</td>
<td>9.5 (37/390)</td>
<td>0.846</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1.0 (5/490)</td>
<td>1.0 (1/100)</td>
<td>1.0 (4/390)</td>
<td>1.000</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>1.0 (5/490)</td>
<td>2.0 (2/100)</td>
<td>0.8 (3/390)</td>
<td>0.271</td>
</tr>
<tr>
<td>Peritonitis</td>
<td>1.0 (5/490)</td>
<td>1.0 (1/100)</td>
<td>1.0 (4/390)</td>
<td>1.000</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>0.6 (3/490)</td>
<td>0.0 (0/100)</td>
<td>0.8 (3/390)</td>
<td>1.000</td>
</tr>
<tr>
<td>Unknown focus of infection</td>
<td>8.2 (40/490)</td>
<td>4.0 (4/100)</td>
<td>9.2 (36/390)</td>
<td>0.102</td>
</tr>
<tr>
<td>Not retrieved</td>
<td>9.6 (52/542)</td>
<td>10.7 (12/112)</td>
<td>9.3 (40/430)</td>
<td>0.651</td>
</tr>
</tbody>
</table>
Severity and course of disease

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>zmpC+</th>
<th>zmpC−</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity at admission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start symptoms (days)</td>
<td>2 (1–4)</td>
<td>2 (1–3)</td>
<td>2 (1–4)</td>
<td>0.433</td>
</tr>
<tr>
<td>Thoracic pain</td>
<td>45.3 (192/424)</td>
<td>48.2 (40/83)</td>
<td>44.6 (152/341)</td>
<td>0.553</td>
</tr>
<tr>
<td>Cough</td>
<td>65.0 (282/434)</td>
<td>75.3 (64/85)</td>
<td>62.5 (218/349)</td>
<td>0.026</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>61.6 (270/438)</td>
<td>76.4 (68/89)</td>
<td>57.9 (202/349)</td>
<td>0.001</td>
</tr>
<tr>
<td>Confusion</td>
<td>27.0 (93/344)</td>
<td>29.3 (17/58)</td>
<td>26.6 (76/286)</td>
<td>0.669</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>38.6 (37.8–39.3)</td>
<td>38.6 (37.8–39.3)</td>
<td>38.6 (37.8–39.2)</td>
<td>0.949</td>
</tr>
<tr>
<td>Hemoglobin (mmol/L)</td>
<td>7.9 (7.1–8.6)</td>
<td>8.2 (7.3–9.1)</td>
<td>7.9 (6.9–8.5)</td>
<td>0.002</td>
</tr>
<tr>
<td>Leukocytes (x10^9/L)</td>
<td>15.8 (10.7–21.8)</td>
<td>16.0 (12.0–22.4)</td>
<td>15.7 (10.4–21.7)</td>
<td>0.524</td>
</tr>
<tr>
<td>Proportion neutrophils (%)</td>
<td>89 (84–93)</td>
<td>91 (84–93)</td>
<td>89 (85–92)</td>
<td>0.382</td>
</tr>
<tr>
<td>pH</td>
<td>7.46 (7.41–7.49)</td>
<td>7.45 (7.42–7.48)</td>
<td>7.46 (7.41–7.49)</td>
<td>0.757</td>
</tr>
<tr>
<td>Infiltrate on chest X-ray</td>
<td>79.5 (379/477)</td>
<td>81.8 (81/99)</td>
<td>78.8 (298/378)</td>
<td>0.513</td>
</tr>
<tr>
<td>Pleural effusion on chest X-ray</td>
<td>41.4 (127/307)</td>
<td>48.4 (31/64)</td>
<td>39.5 (96/243)</td>
<td>0.197</td>
</tr>
<tr>
<td>SIRS</td>
<td>89.4 (389/435)</td>
<td>96.6 (84/87)</td>
<td>87.6 (305/348)</td>
<td>0.018</td>
</tr>
<tr>
<td>Course of hospital stay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICU admission</td>
<td>23.5 (110/468)</td>
<td>33.3 (32/96)</td>
<td>21.0 (78/372)</td>
<td>0.011</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>9.5 (42/442)</td>
<td>15.1 (13/86)</td>
<td>8.1 (29/356)</td>
<td>0.048</td>
</tr>
<tr>
<td>Hospital stay survivors (days)</td>
<td>10 (6–16)</td>
<td>10 (6–16)</td>
<td>10 (6–16)</td>
<td>0.786</td>
</tr>
<tr>
<td>Death</td>
<td>14.5 (71/491)</td>
<td>14.4 (15/104)</td>
<td>14.5 (56/387)</td>
<td>0.990</td>
</tr>
<tr>
<td>Time to death (days)</td>
<td>5 (1–17)</td>
<td>5 (1–23)</td>
<td>5 (1–17)</td>
<td>0.669</td>
</tr>
</tbody>
</table>
Spread at the risk of...?
Conclusion

The presence of \textit{zmpC} was associated with a more severe clinical manifestation of IPD

Information on pneumococcal genetic background may be useful

- To identify vulnerable individuals
- To predict clinical presentation, severity and course of disease
Conclusion

The presence of \textit{zmpC} was associated with a more severe clinical manifestation of IPD

Information on pneumococcal genetic background may be useful

- To identify vulnerable individuals
- To predict clinical presentation, severity and course of disease

\rightarrow \text{Provide additional value to rapid diagnostics}
Conclusion

The presence of \textit{zmpC} was associated with a more severe clinical manifestation of IPD.

Information on pneumococcal genetic background may be useful:
- To identify vulnerable individuals
- To predict clinical presentation, severity and course of disease

→ Provide rationale for more tailored prevention of IPD
Conclusion

The presence of \textit{zmpC} was associated with a more severe clinical manifestation of IPD

Information on pneumococcal genetic background may be useful

- To identify vulnerable individuals
- To predict clinical presentation, severity and course of disease

\rightarrow Provide rationale for more tailored prevention of IPD

Is it ZmpC to be targeted?
Why not....?

Start from clinically relevant phenotype
→ explore pneumococcal origin
Why not....?

Start from clinically relevant phenotype
⇒ explore pneumococcal origin

Pre vs post
Why not....?

Start from clinically relevant phenotype
→ explore pneumococcal origin

Pre vs post

Carriage vs IPD
Why not….?

Start from clinically relevant phenotype
→ explore pneumococcal origin

- Pre vs post
- Carriage vs IPD
- Survivors vs deaths
Why not....?

Start from clinically relevant phenotype → explore pneumococcal origin

- Pre vs post
- Carriage vs IPD
- Survivors vs deaths
- Susceptible vs resistant
Acknowledgements

Canisius-Wilhelmina Ziekenhuis, Nijmegen
Dr. Jacques Meis

Maasziekenhuis Pantein, Nijmegen
Dhr. Theo Mennen
Dr. Carel Schaars

Laboratory of Pediatric Infectious Diseases, Radboudumc, Nijmegen
Dr. Gerben Ferwerda
Christa van der Gaast - de Jongh
Ishana Kokmeijer
Laszlo Groh
Dr. Aldert Zomer
Prof. Peter Hermans
Dr. Marien de Jonge
Thank you for your attention!

Questions?